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1. Introduct ion  

In this paper we adopt the terminology of universal algebra. So by a free algebra 

we will mean that a variety (i.e., an equationally defined class of algebras) is given 

and the algebra is free in that variety. We will also assume that the language of 

any variety is countable. 

In this paper the investigation of the almost free algebras is continued. An 

algebra is said to be a lmos t  f ree  if "most" of its subalgebras of smaller car- 

dinality are free. For some varieties, such as groups and abelian groups, every 

subalgebra of a free algebra is free. In those cases "most" is synonomous with 

"all". In general there are several choices for the definition of "most". In the sin- 

gular case, if the notion of "most" is strong enough, then any almost free algebra 

of singular cardinality is free [9]. So we can concentrate on the regular case. In 

the regular case we will adopt the following definition. If n is a regular uncount- 

able cardinal and A is an algebra of cardinality n then A is almost free if there 

is a sequence (Am: a < n) of free subalgebras of A such that: for all a,  IA~l < n; 

if a < 13, then A~ C_ An; and if ~ is a limit ordinal then A~ = [.J~<~ A~. (In [3], 

such a chain is called a n-f i l t ra t ion. )  It should be noted that this definition is 

not the same as the definition in [9]. The definition there is sensitive to the t ruth 

of Chang's conjecture (see the discussion in [3]Notes to Chapter IV). 

There are two sorts of almost free algebras; those which are essentially free and 

those which are essentially non-free. An algebra A is essen t ia l ly  f ree  if A * F is 

free for some free algebra F. Here * denotes the free product. (Since our algebras 

will always be countably free the free product is well defined.) For example, in 

the variety of abelian groups of exponents six, a free group is a direct sum of 

copies of cyclic groups of order 6. The group ~ 1  C3 @ ~ o  6'2 is an almost 

free algebra of cardinality R1 which is not free but is essentially free. An algebra 

which is not essentially free is essen t ia l ly  non- f ree .  In [2], the construction 

principle, abbreviated CP, is defined and it is shown that for any variety there is 

an essentially non-free almost free algebra of some cardinality if and only if there 

is an essentially non-free almost free algebra of cardinality ~1 if and only if the 

construction principle holds in that variety. As well if V = L holds then each of 

the above equivalents is also equivalent to the existence of an essentially non-free 

almost free algebra in all non-weakly compact regular cardinalities. 

In this paper we will investigate the essentially non-free spectrum of a variety. 

The essen t ia l ly  n o n - f r e e  s p e c t r u m  is the class of uncountable cardinals n in 
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which there is an essentially non-free algebra of cardinality a which is almost free. 

This class consists entirely of regular cardinals ([9]). In L, the essentially non-free 

spectrum of a variety is entirely determined by whether or not the construction 

principle holds. As we shall see the situation in ZFC may be more complicated. 

For some varieties, such as groups, abelian groups or any variety of modules 

over a non-left perfect ring, the essentially non-free spectrum contains not only 

R1 but R~ for all n > 0. The reason for this being true in ZFC (rather than 

under some special set theoretic hypotheses) is that these varieties satisfy stronger 

versions of the construction principle. We conjecture that the hierarchy of con- 

struction principles is strict, i.e., that  for each n > 0 there is a variety which 

satisfies the n-construction principle but not the n + 1-construction principle. 

In this paper we will show that  the 1-construction principle does not imply the 

2-construction principle. 

After these examples are given there still remains the question of whether 

these principles actually reflect the reason that there are essentially non-free 

R-free algebras of cardinality a. Of course, we can not hope to prove a theorem 

in ZFC, because of the situation in L (or more generally if there is a non-reflecting 

stationary subset of every regular non-weakly compact cardinal which consists of 

ordinals of cofinality w). However we will prove that, assuming the consistency 

of some large cardinal hypothesis, it is consistent that a variety has an essen- 

tially non-free almost free algebra of cardinality t~n if and only if it satisfies the 

n-construction principle. (We will also show under milder hypotheses that it is 

consistent that the various classes are separated.) 

Definition 1.1: A variety V of algebras satisfies the n - c o n s t r u c t i o n  pr inc ip le ,  

CPn, if there are countably generated free algebras H C I C L and a partition 

of w into n infinite blocks (i.e. sets) s l , . . . ,  s n so that 

(1) H is freely generated by {hm: m < w}, and for every subset 

g C w if for some k, J n s k is finite then the algebra generated by 

{hm: m C J} is a free factor of L; and 

(2) L = I * F(w) and H is not a free factor of L. 

Here F(w) is the free algebra on R0 generators, and H is a free factor of L, 

denoted HIL , means that there is a free algebra G so that H • G = L. 

The construction principle of [2] is the principle we have called CP1. The 

known constructions of an almost free algebra from CPn seem to require the 
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following set theoretic principle. (The definition that  follows may be easier to 

understand if the reader keeps in mind that a A-system is a generalization of a 

stationary set consisting of ordinals of cofinality w.) 

Definition 1.2: (1) A A-set of he igh t  n is a subtree S of <~A together with a 

cardinal A n for every ~1 E S such that  AO = A, and: 

(a) for all ~ E S, ~/is a final n o d e  of S if and only if A T = R0; 

(b) if ~/ E S \ S s ,  then ~f(~) E S implies ~ E A~, AT~(~ ) < A T and 

E T ~f{~3 < AT: ~/^(/3) E S} is stationary in A T (where 

Sf d¢_=f {7/ E S : 7/is ,~-maximal in S} 

is the family of final nodes of S). 

(2) A A-system of height n is a A-set of height n together with a set B T for 

each ~/E S such that B 0 = 0, and for all r/E S \ SS: 

(a) for all ~ e E T, AT-(~ ) < IBT-<~)I < AT; 

(b) {BT-(~): B E ET} is an increasing continuous chain of sets, i.e., if ~3 </3'  are 

in ET, then B T- (~) ___ B T-(~,); and if a is a limit point of E T (i.e. a = sup(¢ n ET) 6 

ET), then BT-(~ ) = U{BT-(~):/~ < a, ~ 6 ET}. 

(4) For any A-system A = (S, AT, BT: ~/ E S), and any ~? 6 S, let /~T = 

(J{BTt,~: m < ~(~/)}. Say that  a family S of countable sets is based  on A i f S  is 

indexed by S S, and for every ~/6 S S, s T _C/}T. 

A family S of countable sets is f ree if there is a transversal of S, i.e., a one-one 

function f from S to US so that  for all s 6 S f (s)  q s. A family of countable 

sets is, a l mos t  free if every subfamily of lesser cardinality is free. 

Shelah, [10], showed that  the existence of an almost free abelian group of car- 

dinality t¢ is equivalent to the existence of an almost free family of countable sets 

of cardinality ~. The proof goes through A-systems. In [3], the following theorem 

is proved (although not explicitly stated, see the proof of theorem VII.3A.13). 

THEOREM 1.1: g a variety satisfies CP= and A is a regular cardinal such that 

there is a A-system, A, of height n and an almost free family of countable sets 

based on A, then there is an essentially non-free algebra of cardinality A which 

is almost free. 

CONJECTURE: The converse of the theorem above is true. I.e. for each regular 

cardinal A > Ro and every variety the following two conditions are equivalent: 
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(a) for some n < w the variety satisfies the principle CPn and there exists a 

A-system A of height n and an almost free family of countable sets based 

on A 

(~3) there exists an essentially non free almost free algebra (for the variety) of 

cardinality A. 

Since {n : the variety satisfies CPn} is an initial segment of w we could conclude 

that it is a theorem of ZFC that  there are at most 1% essentially non-free spectra. 

Although we will not discuss essentially free algebras in this paper, these alge- 

bras can be profitably investigated. The essen t ia l ly  f ree  s p e c t r u m  of a variety 

is defined as the set of cardinals ~ so that there is an almost free non-free algebra 

of cardinality ~ which is essentially free. The conjecture is that the essentially 

free spectrum of a variety is either empty or consists of the class of successor 

cardinals. For those varieties for which CP1 does not hold, i.e., the essentially 

non-free spectrum is empty, the conjecture is true [6]. It is always true that  

the essentially free spectrum of a variety is contained in the class of successor 

cardinals. (A paper which essentially verifies it is in preparation.) 

A notion related to being almost free is being ~-free where n is an uncountable 

cardinal. An algebra is ~-free if "most" subalgebras of cardinality less than n 

are free. There are various choices for the definition of "most" and the relations 

among them are not clear. For a regular cardinal n we will say that A is n-free if 

there is a closed unbounded set in :P~(A) (the set of subsets of A of cardinality less 

than n) consisting of free algebras. Note that  an almost free algebra of cardinality 

is R-free. One important associated notion is that of being L~,~-free; i.e., being 

L~-equ iva len t  to a free algebra. A basic theorem is that: 

THEOREM 1.2: I f  an algebra is n+-free, then it is Loo~-free. 

Proo~ See [912.6(B). (Note n+-free in the sense here implies E +-free as defined 

there.) | 

We will use some of the notions associated with the Loo~-free algebras. Suppose 

is a cardinal and A is an algebra (in some fixed variety). A subalgebra B which 

is <n-generated is said to be n -pu re  if it is free and Player I has a winning 

strategy in the following game of length w. 

Players I and II alternately choose an increasing chain B = Bo C_ 

B1 C_ --. _C Bn C .- .  of subalgebras of A each of which is <n- 
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generated. Player I wins a play of the game if for all n, B2n is free 

and B ~  is a free factor of B2n+2. 

If B C_ A is not < "c-generated (but B C_ A are free) we just ask B,~+I to be 

< "c-generated over Bn for each n (used e.g. in the proof of 4.8). 

The choice of the term "c-pure is taken from abelian group theory. The following 

theorem sums up various useful facts. Some of the results are obvious, others are 

taken from [5]. 

THEOREM 1.3: 

(1) An algebra is Loo~-free if and only if every subset of cardinality less than 

"c is contained in a <'c-generated algebra which is "c-pure. 

(2) If F is a free algebra then a subalgebra is ,c-pure if and only if it is a free 

factor. 

(3) In any L ~ - f r e e  algebra the set of "c-pure subalgebras is "c-directed under 

the relation of being a free factor. 

(4) If 'c  < A and A is Lo~-free, then any "c-pure subalgebra is also A-pure. 

Notice that part (2) of the theorem above implies that  for ~, if A is L ~ - f r e e  

then there is a formula of Loo~ which defines the "c-pure subalgebras (of A, but 

the formula depends on A). 

We will use elementary submodels of appropriate set theoretic universes on 

many occasions. We say that a cardinal X is la rge  e n o u g h  if (H(x), E) contains 

as elements everything which we are discussing. If A and B are free algebras 

which are subalgebras of some third algebra C, then by A + B, we denote the 

algebra generated by A u B and define B/A  to be f ree  if any (equivalently, 

some) free basis of A can be extended to a free basis of A + B. Similarly for 

"c a regular uncountable cardinal, if A + B is "c-generated over A then we say 

that B/A  is a l m o s t  f ree  if there is a sequence (B~: a < ~) so that: for all a,  

IB~I < ~; for all a < 3, B~ C_ B~; if 5 is a limit ordinal then B~ = U~<~ B~; 

A + B = A + U~<~ B~; and for all a, B,~/A is free.  The notions of essen t ia l ly  

non- f r ee ,  s t r o n g l y  "c-free etc. for pairs are defined analogously. The following 

lemma is useful. 

LEMMA 1.4: Suppose A C_ B are free algebras and N -< (H(x), E), where X is 

large enough. If  A, B E N and ( B N N) / ( A N N) is free then ( B N N ) / A  is free. 

Proof: Let X E N be a free basis of A. By elementariness, A N N is freely 

generated by X M N. Choose Y so that (X (1 N) U Y is a free basis for B N N. 
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We now claim that X U Y freely generate the algebra they generate (namely 

A + (B N N)). Suppose not. Then there are finite sets Y1 C Y and X1 C X 

such that Y1 U X1 satisfy an equation which is not a law of the variety. By 

elementariness, we can find X2 C X O N so that Y1 U X2 satisfies the same 

equation. This is a contradiction. I 

2. CP1 does  no t  imp ly  CP2 

In this section we will present an example of a variety which satisfies CP1 but not 

CP2. The strategy for producing the example is quite simple. We write down 

laws which say that the variety we are defining satisfies CP1 and then prove that 

it does not satisfy CP2. We believe the same strategy will work for getting an 

example which satisfies CPn but not CP,~+I. However there are features in the 

proof that the strategy works for the case n = 1 which do not generalize. 

The variety we will build will be generated by projection algebras. A projec-  

t ion  a lgebra  is an algebra in which all the functions are projections on some 

coordinate. If a variety is generated by (a set of) projection algebras, then it is 

not necessarily true that  every algebra in the variety is a projection algebra. For 

example, there may be a binary fuction ] which in one algebra is projection on 

the first coordinate and in another is projection on the second coordinate. 

In a variety generated by projection algebras there is a very simple character- 

ization of the free algebras. It is standard that a free algebra in a variety is a 

subalgebra of a direct product of generators of the algebra which is generated by 

tuples so that for any equation between terms there is, if possible, a coordinate 

in which the equation fails for the tuples (see for example Theorem 11.11 of [1]). 

In a variety generated by projection algebras the free algebra on t¢ generators is 

the subalgebra of the product of the various projection algebras on n generators 

which is generated by t¢ elements which differ pairwise in each coordinate. 

THEOREM 2.1: There is a variety satisfying CP1 but not CP2. 

Proof: To begin we fix various sets of constant symbols: {cm,n: m, n < w) 

and {dn: n < w}. The intention is to define an algebra I such that for all m, 

{Cm,n: n < w} U {dn: n < m} will be a set of free generators for an algebra in our 

variety. In particular, (co,n: n < w} will be a set of free generators. We intend 

that H will be the algebra generated by {dn: n < w} and I will be the whole 

algebra (in the definition of CP1). We define the language and some equations 
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by induction. We have to add enough function symbols so that for each m, 

{Cm,n: n < w} U {dn: n < m} generates the whole I, it suffices that it generates 

all c E {ck,,~: k, n < w} U {dn: n < o~}. However, while doing this we have still 

to make each {cm,n: n < w} L) {dn: n < m} free. At each stage we will add a 

new function symbol to the language and consider a pair consisting of a constant 

symbol and a natural number m. (Note that the constants are not in the language 

of the variety.) The enumeration of the pairs should be done in such a way that 

each pair consisting of a constant symbol and a natural number is enumerated 

at some step. Since this is a routine enumeration we will not comment on it, but 

assume our enumeration has this property. Also at each stage we will commit 

ourselves to an equation. 

For the remainder of this proof we will let the index of the constant dn be n 

and the index of the constant cm,n be m + n. At stage n we are given a constant 

t,~ (so that t,~ C {c,~,k,dk: k , m  • w}) and a natural number mn, we now add 

a new function symbol fn to the language where the arity of ]n is chosen to be 

greater than mn plus the sum of the indices of t~ and all the constant symbols 

which which have appeared in the previous equations. (No great care has to be 

taken in the choice of the arity, it just has to increase quickly.) Now we commit 

ourselves to the new equation 

(,) t,~ = ]~(d~(i < mn) ,cm~, j ( j  < kn)) 

where the arity of fn is mn + k,~. 

The variety we want to construct has vocabulary T, the set of function sym- 

bols we introduced above. We use a subsidiary vocabulary T' which is ~-U 

{cm,,~, dn: m, n < w}. Let K0 be the family of T~-algebras which are projection 

algebras satisfying the equations (,)  whose universe consists of {c0,n: n < w} such 

that for all m, the interpretations of Cm,n (n < w) and dn (n < m) are pairwise 

distinct. Let K be the class of "r-reducts of members of K0. We will shortly prove 

that K is non-empty. If we assume this for the moment, then it is clear that the 

variety generated by K satisfies (1) in the definition of CP1 with {dn: n < w} 

standing for {h,~: n < w}. More exactly in the T-reduct of the direct product 

of the elements of K' ,  for all m, Am, {cm,n: n < ~} U {d~: n < m} generates a 

subalgebra. The choice of equations guarantee that all the subalgebras are the 

same. Also, if some members of Am satisfy an equation, they satisfy it in every 

member of Ko, but because the functions are equations it is a low of our variety, 
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so Am freely generates the subalgebra. The proof that (2) of the definition holds 

as well as the proof that the variety is non-trivial rests largely on the following 

claim. 

CLAIM 2.1.1: For all m there is an element of K so that in that algebra Coo = d m  

(with the dn's distinct - -  see definition of K,  Ko ) 

The proof of the claim is quite easy. We inductively define an equivalence 

relation = on the constants and an interpretation of the functions as projections. 

At stage n, we define an equivalence relation -,~ on {ckm, din: m, k < w}, so 

that --n is a subset of --=n+l, all but finitely many equivalence classes of =n 

are singletons and E{card(A) - 1: A an =n -equivalence class} _< 2n. Moreover 

we demand that for each 1 < w no two distinct members of {Cl,m : m < w}U 

{din : m < I} are =n-equivalent. To begin we set Co,o -0  din. At stage n, 

there are two possibilities, either t~ has already been set equivalent to one of 

{dk: k < mn} U {cm.:i: i < kn} or not. In the first case our assumption on the 

arity guarantees that we can make f~ a projection function and we put - - n - - - ~ - l .  

In the second case there is some element in {cm,,j : j < kn} which has not been 

set equivalent to any other element. In this case we choose such an element, 

set it equivalent to tn and to some c0,m (for a suitable m) and let f~ be the 

appropriate projection. In the end let - be x - y if and only if (3n)(x --n y). 

Let M be the T'-algebra with the set of elements {cn,,~, dn : n, rn < w} /  - ,  

functions fn as chosen above (note that f~ respects -- as it is a projection) 

and c . . . .  dn interpreted naturally. Note that by the equation ( .)  for every m, 

{Cm,n: n < w} U {d~: n < m} lists the members. 

It remains to verify that condition (2) is satisfied. Let I denote the free 

algebra generated by {Co,s: n < w}. Suppose that (2) is not true. Choose ele- 

ments {en: n < w}, so that I * F(R0) is freely generated by 

the dn's and the e~'s. So there is some m > 0, so that Co,o is in the subal- 

gebra generated by {d~: n < rn} U {e.:  n < w}. There is a homomorphism from 

I*  F(Ro) onto I which is the identity on I and maps all e~ to do. So Co,0 is in the 

subalgebra of I which {d~: n < m} generates. But if we turn to the projection 

algebra where Co,o = din, we have a contradiction (see definition of K).  

Finally we need to see that  our variety does not satisfy CP2. We will prove 

the following claim which not only establishes the desired result but shows the 

limit of our method. 
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CLAIM 2.1.2:If12 is a variety which is generated by projection algebras then 12 

does not satisfy CP2. 

Suppose to the contrary that we had such a variety. Let I and {xi~: i < 2, n < 

w} be an example of CP2. Choose (y~: n < w) so that 

{xl~: n < w} U {y~: n < w} 

is a set of free generators for I (we rename (ha : n E si} as {xin : n < w, i  < 

2}. Notice that if 0 is any verbal congruence (see below) on I which does not 

identify all elements then the image of a set of free generators of a subalgebra will 

freely generate their image in the subvariety 12/0 defined by the law. (A verba l  

cong ruence  is a congruence which is defined by adding new laws to the variety.) 

Fix a vocabulary. 

We will show by induction on the complexity of terms T that 

® if 12 is a variety generated by projection algebras and if X U Y are free 

generators of an algebra A E V, a = r ( . . . ,  x i , . . . ,  y j , . . . ) ,  x~ E X, yj E Y, 

a E A and X U {a} freely generates a subalgebra of A then a is in the 

subalgebra generated by Y. 

The base case of the induction is trivial. Suppose that a = f ( t o , . . . ,  t,~). For 

i _< n let 0 /be  the congruence on A generated by adding the law f ( Z o , . . . ,  zn) = 

zi and let 12i be the subvariety satisfying this law. Since 1; is generated by 

projection algebras so is 12~, by K~ = {A E K: A satisfies f ( z o , . . . ,  z,~) + z~}, for 

all i. Furthermore 12 is the join of these varieties (as K = Oi~=o Ki) .  In A/Oi, 

a/Si = ti/Oi. By the inductive hypothesis we can choose for each i, a term si 

using only the variables from Y so that A/8i  satisfies that ti/Oi = sl/Oi. Hence 

each variety, 12i satisfies the law f ( t o , . . . ,  tn) = f ( s 0 , . . . ,  s~). So Y satisfies the 

law as well. We have shown that a = f ( s o , . . . ,  sn), i.e., that a is in the subalgebra 

generated by Y. So ® holds. 

Applying the last claim we have, {x0,~: n < w} is contained in the subalgebra 

generated by {Yn: n < w}. Call the latter subalgebra B. Let F denote a count- 

ably generated free algebra. Since B • F is isomorphic over B and hence over 

{x0n: n < w} to I, and {x0n : n < w} generates a free factor of I,  necessarily 

{xon: n < w} freely generates a free factor of B ,  F. Hence {xin: i < 2, n < w} 

freely generates a free factor of I * F.  Thus we have arrived at a contradiction. 

I 
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3. M i s c e l l a n e o u s  

One natural  question is for which cardinals ~¢ is every n-free algebra of cardinality 

n free (no mat te r  what the variety). By the singular compactness theorem ([9]) 

every singular cardinal is such a cardinal. As well it is known that  if n is a 

weakly compact cardinal then every n-free algebra of cardinality n is free. Some 

proofs of this fact use the fact that  for weakly compact cardinals we can have 

many stat ionary sets reflecting in the same regular cardinal (see the proof of 

[3]IV.3.2 for example). It  turns out that  we only need to have single stat ionary 

sets reflecting. We say that  a stat ionary subset E of a cardinal n re f lec t s  if there 

is some limit ordinal a < n so that  E n a is stationary in a.  The relevance of the 

following theorem comes from the fact that  the consistency strength of a regular 

cardinal such that  every stat ionary set reflects in a regular cardinal is strictly 

less than that  of a weakly compact cardinal [7]. So the consistency strength of 

a regular cardinal n so that  every almost free algebra of cardinality n is free is 

strictly less than that  of the existence of a weakly compact cardinal. 

We separate out the following lemma which will be useful in more than one 

setting. 

LEMMA 3.1: Suppose F is a free algebra and G C_ H are such that H is 

a free factor of  F and there are A, B free subalgebras of  H so that G C_ A, 

rank(B) = card(H) + R0 and A * B = H. Then G is a free factor of F i f  and 

only i f  G is a free factor of H.  

Proof'. Obviously if G is a free factor of H then G is a free factor of F. Suppose 

now that  G is a free factor of F.  Since G is a free factor of F we can choose B1 

so that  IBI = IBlf = rk(B1) and G is a free factor of A * B1. But since H is 

isomorphic over A to A • B1, G is also a free factor of H.  II 

Notice that  in the hypothesis of the last lemma the existence of A and B is 

guaranteed if we assume that  [G[ < [H[. 

In some varieties a union of an increasing chain of cofinality at least n of n-pure 

subalgebras is n-pure as well. In general varieties this statement may not be true, 

later in our work we will need the following weaker result. 

THEOREM 3.2: Suppose ~ is an inaccessible cardinal and E is a subset of n 

such that every stationary subset of  E reflects in a regular cardinal I f  A is an 

almost free algebra of  cardinality n and there is a ~-filtration (As: a < ~) of A 

such that for all a q~ E,  A s  is ~-pure then A is free. 
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Proot Since n is a limit cardinal, A is also L ~ - f r e e .  Hence wlog E is a set 

of limit ordinals and each A~ is free (here we use that  A is "almost free"); for 

all (~ < D, tA~I < IA~I and for all (~ < ~, A~+I is a free factor of A~+I and 

C A \ E implies that  A~ is n-pure. Also wlog 

(*)1 if A~ is n-pure in A then A~+I/A~ is free 

(*)2 if A~ is not n-pure in A then A~+,I/A~ is not essentially free. 

Assume that  A is not free. We will use the fact that  

If {A~: ~ < n} is a filtration of A and B is a n-pure subalgebra of 

cardinality less than n then for a club C of n,/3 E C, cfD = w implies 

that  A~/B is free. 

Let 

E* = ( a  < n: A~ is not a free factor of A~+I}, 

C* -= {~ < n : a is a limit cardinal and D < (~ => IA~I < a}. 

Now C* is a club of n and E* is a stat ionary subset of n (otherwise A is free). 

Choose A a regular cardinal so that  ]A~ I = A and (E* n C*) n ~ is stat ionary 

in ~. If  A~ is free then we can find a strictly increasing continuous sequence 

(ai: i < )~) such that  i < j implies A~/A~, is free. Let C = {i < A: a~ = i}. 

Since (E* n C*) N ~ is stat ionary there is D E E* n C* n A n C. So we can find 

13,~ for n < w such that  Dn E C,/30 = D and 13~ < j3n+l. 

Let t3~ = U{~,: n < w}. Then A~/A~ is free by the choice of C (and of the 

a~'s). Also AZ.+I/A~o+t is free. Together Azo+l/A~o is essentially free, so by 

(*)2 we know A~o+l/AZo is free which contradicts our choice of E* and Do E E*. 

Hence A~ is not free. I 

4. G e t t i n g  CPn 

In this section we will deal with the problem of deducing CP,~ from the existence 

of a n-free algebra. We will need to deal with subalgebras of free algebras. 

To handle certain technical details in this section we will deal with varieties 

in uncountable languages. Most things we have done so far transfer to this new 

situation if we replace of cardinality n by ,~-generated. One trick we will use is 

to pass from a pair of algebras B/A to a new algebra B* by making the elements 
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of A constants in the new variety. Recall that  the notation B / A  implies that  B 

and A are subalgebras of an algebra C and both A and the subalgebra generated 

by B U A are free. 

Definition 4.1: Suppose ~ is a variety and A is a free algebra in the sense of V. 

Let VA denote the variety where we add constants for the elements of A and the 

equational diagram of A. 

Notice that any element of lZA contains a homomorphic image of A. If B is 

any algebra which contains A we can view B as a )?A algebra. 

PROPOSITION 4.1: Suppose A is a ])-free algebra and B is an algebra which 

contains A. Then for all n, B is n-free in "12 A if and only if B /A  is n-free in V. 

The following lemma is easy and lists some facts we will need. 

LEMMA 4.2: Suppose A C_ B and both A and B are free algebras on n generators. 

Then the following are equivalent. 

(i) every subset of A of cardinality < n is contained in a subalgebra C which 

is a free factor of both A and B. 

(ii). every free factor of A which is <n-generated is also a free factor orB. 

Proof: That (ii) implies (i) is obvious. Assume now that  (i) holds and that  C is 

a free factor of A which is <R-generated. Let D be a <~-generat.ed free factor of 

both A and B which contains C. Since A --D B, A ~ c  B. So C is a free factor 

of B. | 

If A and B are free algebras which satisfy either (i) or (ii) above, we will write 

A -<~o~ B. This notation is justified since for free algebras these conditions are 

equivalent to saying A is an Loo~-subalgebra of B. It is possible to give a simpler 

characterization of CPn. 

THEOREM 4.3: For any variety of algebras, CPn is equivalent to the following 

statement. There are countable rank free algebras, A -~oo~ B and countable rank 

free algebras Ak (k < n) so that 

(i) A = ~ k  < nAk and for all m, ~kcmAk is a free factor of B 

(ii) if F is a countable rank free algebra, then A is not a free factor of B * F 

(alternatively, B /A is essentially non-free). 

Proof: CPn clearly implies the statement above. Assume that  A, B, Ak (k < n) 

are as above. We will show that  B • F together with A satisfies CPn with 
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A, B, B * F here corresponding to to H, I,  L there. It is enough to prove that (i) 

in the statement of CPn holds. It suffices to show for all m that if C is a finite 

rank free factor of Am then "kkcmAk * C is a free factor of B * F. Choose Y a 

complementary factor in B for ~k#mAk. Choose now finite rank free factors D 

and E of ~kcmAk and Y respectively so that C is contained in D * E and is a 

free factor of D * C. Clearly D ,  E is a free factor of B and also of D • Y, hence 

we have B . F  ~D.E D * Y * F .  Now C * D i s a f r e e  factor of A, so as A i s  

an L~,~-submodel of B * F,  all are countable generated, clearly C • D is a free 

factor of B • F.  By the last two sentences (as C * D _c D * E) we have that  C * D 

is a free factor of D * Y * F.  Also ~kl#mAl, D • Y • F are freely amalgamated 

over D, D is a free factor of both and D C_ D *  C C_ D *  Y *  F are free. D is a 

free factor of D * C, D * C is a free factor of D * Y * F; together "ktcmAz * C is 

a free factor of B • F. So we have finished. | 

We next have to consider pairs (and tuples). The following two facts are 

standard and proved analogously to the results for algebras (rather than pairs). 

LEMMA 4.4: Suppose B /A  is ~+-free. Then it is strongly n-free (i.e. Loo~- 

equivalent to a free algebra in VA). 

COROLLARY 4.5: Suppose ~ is regular and A C_ B. I f  B / A  is ~;-free and 1BI = 

then B = U~<~ B~ (continuous) where A = Bo, B~+I is countably generated 

over B~ and for all (~, B~ -~oo~ B. 

We now want to go from the existence of certain pairs to CPn for various n. 

The difficulty is in suitably framing the induction hypothesis. We define the pair 

B/A  to be R0-free if A -~oo~ A + B. In order to state our result exactly we will 

make an ad hoc definition. 

Definition 4.2: We say ~ impl ies  CPn,m if: n is regular, and for any variety Y 

if (*)~,m below holds then the variety satisfies CPn+m where: 

(*)~,,~ there are free algebras (free here means in )2 ) A, B, F0, F1, F 2 , . . . ,  Fm 

such that  

(a) all are free, 

(b) all have dimension n ( i.e., a basis of cardinality ~), 

(c) A is a subalgebra of B, 

(d) A is the free product of F0, Fz, F 2 , . . . ,  Fro, 
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(e) if m > 0, for k E { 1 , 2 , . . . , m } ,  B is free over the free product of 

{Fi: i _< m but i is not equal to k}, 

(f) B/A  is a-free but not essentially free. 

We say "c impl ies  CP ,  if for every m it implies CPn,m. 

Remark: (1) We can weaken the demand on the F~ to having the dimension 

be infinite. Note, as well, that there is no demand that the free product of 

{Fi: i ¢ 0} is a free factor of B. 

(2) Remember that if ]; satisfies CP~+I then Y satisfies CP , ,  

PROPOSITION 4 .6 :R0  implies CPo. 

Proof." Without loss of generality we can assume that B is isomorphic to B • F 

over A where F is a countable rank free algebra. There are two cases to consider. 

First assume that the free product of {Fi: i ~ 0} is a free factor of B. In which 

case by Theorem 4.3 we have an example of CPm+I (hence 1; satisfies CPm). 

Next assume that the free product of {Fi: i ~ 0} is a not free factor of B. We 

claim that A* and B are an example of CPm, where A* is the free product of 

{F~: i > 1}. All that  we have to check (by 4.3) is that for all k, such that 

1 _< k _< m, the free product of {F~: i _> 1,i ~ k} is a free factor of B. But this 

is part of the hypothesis. I 

Note that in the definition we can allow to increase all dimensions to be just at 

least "c except that B should be generated by A together with a set of cardinality 

"C. 

We will take elementary submodels of various set-theoretic universes and in- 

tersect them with an algebra. 

PROPOSITION 4.7: Suppose that A and B are free algebras and B/A  is essen- 

tially non-free and B is ,c-generated over A. If  N -.< (H()c), E), where A, B E N, 

+ 1 C_ N and X >- ]A[ + "c, then (B N N) / (A  n N) is essentially non-free. 

Furthermore if B /A  is ,c-free, then so is (B D N) / (A  N N). 

Proo~ First deal with the first assertion. Let Y E N be a free basis of A. (Note 

that such a Y must exist since A E N.) So A n N is freely generated by Y N N. 

Without loss of generality, we can assume that B is isomorphic over A to B * F 

where F is a free algebra of rank ~. Under this assumption, (B n N)/ (A  n N) is 

essentially non-free if and only if it is not free. Suppose that (B n N)/ (A  N N) is 

free. Then we can find Z C_ (N n B) so that Z U (Y n N) is a basis of N n B. 
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We first claim that  Z U Y is a free basis for the algebra it generates. If not, 

then there is some finite Z1 _C Z and finite Y1 C_ Y so that Z1 U Y1 is not a free 

basis for the algebra it generates. That is it satisfies some equation which is not 

a law of the variety. By elementariness, we can find Y2 C_ N M Y so that  Z1 U Y2 

satisfies the same law. This is a contradiction. 

To finish the proof we must see that  Z U Y generates B. Choose X E N of 

cardinality ~ so that  X u A generates B. Since a + 1 C_ N, X C N. Hence 

X C_ (B M N). As Z U (Y M N) generates B M N and Y generates A we conclude 

that X U A (and hence B) is contained in the algebra generated by Z U Y. 

The second statement is very simple to prove. If B/A  is a-free, choose in N, X 

of cardinality a so that B is generated over A by X and a sequence (X~: a < a) 

which witnesses that  B/A  is a-free. Since each X~ C_ N, (B N N ) / ( A  M N) is 

a-free. I 

THEOREM 4.8: 

(1) R1 implies CP1. 

(2) Suppose a is a regular cardinal. Assume that for every variety V and 

free algebras A, B in l; of cardinality a, if B /A  is a-free essentially non- 

free then there are: A which implies CPn,m+l, X large enough and M -~ 

(H(x), E, <) of cardinality < a, M M a an ordinal >_ A so that A, B E M 

and B / A U ( B M M) is A-free (actually not used) and there is an elementary 

submodel N -~ (H(x), E, <) such that A, B, M E N, A + 1 C_ N, [N[ = A 

and N M B /A U ( B n N )  is almost free essentially non-free. Then a implies 

CPn+l,m. 

(3) Suppose a is a regular cardinal. Assume that for every variety V and free 

algebras A, B in l; , if B /A  is a-free essentially non-free of cardinality a then 

there are: A which implies CPn, X large enough and M -~ (H(x), E, <) of 

cardinality < a, M M a an ordinal >_ A, so that A, B E M and B M M/A  is 

A-pure in B /A  and there is an elementary submodel N -~ (H(x), E, <) such 

that A , B , M  E N, A + 1 C_ N, IN[ = A and N M B / A U  (B M N) is almost 

free essentially non-free. Then a implies CPn+I. 

Proof." By Corollary 4.5 and Proposition 4.6, (1) is a special case of (2). Also 

part (3) follows from part (2), by the definitions. So we will concentrate on that 

c a s e ,  

Consider an instance of checking that  g implies CPn+l,m, i.e., we are given 
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A, B, Fo, F1,..., Fm as in the definition of (*)~,m. Let M, X, A be as guaranteed 

in the assumption of the theorem and let N be an elementary submodel of the 

X approximation to set theory to which A, B, M, Fo, F 1 , . . . ,  Fm belong, N has 

eardinality A, A + 1 C_ N and (N N B)/(A U (B O M)) is almost free essentially 

non free of dimension A. 

Note first that there is a filtration (B~: i < n) of B such that for all i, Bi/A 
is free. We assume that the filtration is in M, so there is some i such that 

M A B  = B~. So in particular, M O B / A i s  free. It is now easy to see that  

the algebra generated by (M N B) U A is the free product over A n M of A and 

M N B. More exactly it suffices to show that there any relation between elements 

is implied by the laws of the variety and what happens in A and B N M. Fix 

Y E M a set of free generators of A. As we have pointed out before Y n M freely 

generates A n M. As well, since B n M/A is free, for any finite set C _C B n M, 

there is a finite subset D C_ B o M so that C C_ D + (A n M) and D/A n M is 

free. Let Z C_ M be such that  Z U (Y n M) is a set of free generators for A + D. 

To finish the proof that A + B n M is the free product of A and B O M over 

A O M, it suffices to see that Y U Z freely generates A + D. The set obviously 

generates A + D. By way of obtaining a contradiction assume that a forbidden 

relation holds among some elements of Z and some elements of Y. Then since 

M is an elementary submodel of an approximation to set theory, the elements of 

Y can be taken to be in Y O M, which contradicts the choice of Z. Finally note 

that since B N M/A is free, B N M/A n M is essentially free. 

Let Ao be ANM and let Bo be BNM. Let A1 be the subalgebra of B generated 

by A u Bo. 

As each Fk (k < m) is free and we can assume belongs to M, clearly 

F o =dr Fk N M 

is free of dimension A and Fk is the free product of F ° and some free F 1 which 

has dimension ~. 

Without loss of generality, each F~ belongs to N. Let B1 be the subalgebra of 

B generated by B0 U F~. Since Bo/Ao is essentially free, B1/Ao is free. Let F1+1 

be a free subalgebra of B1 such that B1 is the free product of Ao and F1+1. 

Without loss of generality, F~+ 1 E N. For k < m + 1, let F~ be F~ n N if 

k > 0 a n d A o i f k = 0 .  Let B* b e B N N a n d l e t  A* be t h e s u b a l g e b r a o f B  

generated by [A U (B n M)] n N. 
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That  B*, A*, F~ (for k _< m + 1) are free should be clear, as well as the fact 

that A* is the free product of {F~: k < m + 1}. Furthermore B*/A* is almost 

free but essentially non-free. It remains to prove that if k _< m + 1 is not zero, 

then B* is free over the free product of {F*: i ¢ k}. After we have established 

this fact we can use that A implies CPn,,~+I, to deduce that CPn+m+l holds in 

the variety. 

Assume first that  k <_ m. We know that  B is free over the free product of 

{Fi: i ¢ k}. So B n N is free over the algebra generated by (B n M)U U{Fi n N : 

i _< m, i ¢ k}. But the algebra generated by (B n M) u -ki<_m,ickF~ is the same 
1 

as Ao * F~+I * "kO<i<m,i#kFi 1. Next assume that k = m + 1. We must show that 

B n N is free over Ao* FI* * . " *  F* .  As above B n N is free over A and so as before 

B n N is essentially free over A n N. Since A n N = Ao * F{ , . . .  • F *  • (F  1 N N), 

B n N is essentially free over Ao * FI* * " "  * F* .  So replacing, if necessary, B n N 

by its product with a free algebra we are done. | 

Discussion: In order to get a universe where the existence of an l%~-free essen- 

tially non-free algebra implies CP,~, we will use various reflection principles. 

We will consider sentences of the form Q1X1Q2X2... QnXn¢(X1,. . .  Xn), where 

Q1,- . .  Qn are either aa or star and ~b(X1,... ,  X~) is any (first-order) sentence 

about X 1 , . . . ,  Xn (i.e., ~b is just a first order sentence where X 1 , . . . ,  Xn are ex- 

tra predicates). We call this language L2(aa). To specify the semantics of this 

language we first fix a cardinal A, and say in the A-interpretation, a model A 

satisfies aa X ¢ (X)  if there is a closed unbounded set, C in P<~ (A) so that ¢ (X )  

for all X E ¢. Similarly stat means "for a stationary set". To denote the A in- 

terpretation we will write L2(aa ~) Notice that the L~vy collapse to A + preserves 

any statement in the A-interpretation. 

Definition 4.3: For regular cardinals ~, A, let A,~x denote the following principle: 

Suppose A is a structure of whose underlying set is ~ and ~ is any 

L2(aa~)-sentence. Let C be any club subset of ~. If A satisfies 

then there is a substructure in C of cardinality A which satisfies ~. 

This principle is adapted from the one with the same name in [8]. They use it 

to show that that lq~2+l may be outside the incompactness spectrum of abelian 

groups. 
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THEOREM 4.9 ([8]): 

(1) I f  ~ is weakly compact and ~ is collapsed (by the Ldvy collapse) to R2, then 

A ~ I  holds. 

(2) Suppose it is consistent that that there are Ro supercompact cardinals. 

Then it is consistent that for every m > n, A~.~,~ holds. 

THEOREM 4.10: 

(1) Suppose A ~  holds. If  in a variety there is an R2-free essentially non-free 

algebra of cardinality R2, then CP2 holds. 

(2) Suppose m > 1 and for every m >_ n > k, As~,~ holds. If  in a variety 

there is an ~ - f r e e  essentially non-free algebra of cardinality R~, then CP~ 

holds. 

Proof: (1) Suppose A is an R2-free essentially non-free algebra of cardinality 

Re. Without loss of generality we can assume that A - A • F where F is a 

free algebra of cardinality R2. Hence if A* C_ A, IA*[ < [A[, # _< R2 then A/A* 

is essentially p-free if and only if A/A* is p-free. Consider C = {X: IXI = 

Ro, X is free and A / X  is Rl-free}. We claim that C must contain a club. Oth- 

erwise we would be able to reflect to a free subalgebra of cardinality t~l which 

satisfies (in the Ro interpretation) 

stat X stat Y ( Y / X  is essentially non-free) 

which contradicts the freeness of the subalgebra. 

Consider now a filtration {As: a < w2} (such that each As is free). If 

{a: A/A~ is Rl-free} 

contains a club, say E, then we can find (Mi: i < w2), an increasing contin- 

uous sequence, Mi -~ (H(x), E, <), ";1 + 1 C_ Mi, [IMi]l = R1, and A, B, C, E, 

(As: a < ";1) E Mi such that Mi+l = U~<~I Mi,~, Mi,~ -< (H()~), E, <) increas- 

ing continuously (in e), [[Mi,~ll = Ro, {Mi, A, B, C, (As: a < ";1), E} E Mi,~ and 

Mi+l = U~<,~I Mi,~. Clearly 5id---fMi N";1 • E, M~ n A = A~,, Mi,~ N A/A~, is free 

(as 51 • E). As A is not free, for some i, A A Mi+I/A A Mi is not free; it is not es- 

sentially free (see the beginning), so (Mi, Mi+l, 0, A) satisfies the assumption on 

(M, N, A, B) in Theorem 4.8(2). We are done since in this ease by Theorem 4.8, 

R1 implies CP1 and we have an instance of (*)~1,1. Hence the variety satisfies 

CP2. 
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Assume the set does not contain a club, i.e., 

S = {a: A/A,~ is essentially not Rl-free} 

is stationary. Let • be the L~vy collapse of l~2 to N1. Then, by the previous 

paragraph (on C), 

Ikp A is free. 

Let )( be the name for a free basis of A. Choose some cardinal X which is large 

enough for ~. Let M -~ (H(x), E, <) where < is a well-ordering, everything 

relevant is an element of M, wl C_ M, and M A w 2  = ~ E S. Next choose a 

countable N -~ (H()~), E, <) so that  M E N and (NAA)/Ae is essentially non-free. 

We will contradict this statement and so finish the proof. By Proposition 4.7, 

(g n A)/(N n A~) is essentially non-free. 

WlogC E MN, hence N N A E C, so A/(N n A) is Nl-free. We shall show 

that A/(N n A~) is Nl-free. Let us see why this finishes the proof. By the two 

facts we can find a countable subalgebra B so that  B/(N N A) and B/(N n A~) 
are both free. But since B = (N n A) • F for some free algebra F, we would 

contradict the fact (N n A)/(N n A~) is essentially non-free. 

Let p be an N n M-generic condition. Then 

p Ik N N M O A (= N n A6) is generated by N n A~ n )(. 

So p forces that A/(N n A6) is l~l-free. But being Rl-free is absolute for L~vy 

forcing. 

The proof of part (2) is similar. I 

The situation in part (2) of the theorem above is perhaps the most satisfying. 

On the other hand we need very strong large cardinal assumptions to make it true. 

(It is not only our proof which required the large cardinals but the result itself, 

since if the conclusion of (2) is satisfied then we have for all m, any stationary 

subset of Rm+l consisting of ordinals of cofinality less than Rm reflects.) It is of 

interest to know if the classes can be separated via a large cardinal notion which 

is consistent with V = L. Rather than stating a large cardinal hypothesis we will 

state the consequence which we will use. 

Definition 4.4: Say a cardinal # is an w-limit of  weak ly  c o m p a c t s  if there are 

non-empty disjoint subsets S, Tn (n < ca) of tt consisting of inaccessible cardinals 

so that 
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1. for every n and ~ E Tn and X _C ~, there is ), E S so that  (Vx, X N A, E) 

- ~  (y., x, e) 
2. for every n and ~ E T~+I, Tn I-1 a is stationary in ~¢. 

Notice that  (1) of the definition above implies that every element of Tn is 

weakly compact. 

THEOREM 4.1 1 : Suppose that # is a w-limit of weakly compacts and that GCH 

holds. Let S, Tn (n < w) be as in the definition. Then there is a forcing extension 

of the universe satisfying: for all n and ~ E T~ there is a a-/ree essentially non-free 

algebra of cardinality ~ if and only if CP~+I holds. 

Proof'. The forcing notion will be a reverse Easton forcing of length #. That 

is we will do an iterated forcing with Easton support to get our poset P. The 

iterated forcing up to stage a will be denoted P~ and the iterate at a will be Q~. 

For a outside of S U Un<~Tn, let ( ~  be the P~-name for the trivial poset. For 

a E S, let ( ~  be the P~-name for the poset which adds a Cohen generic subset of 

a. For a E To, let Q~ be the P~-name for the poset which adds a stationary non- 

reflecting subset of a consisting of ordinals of cofinality w. Finally for a E Tn+l, 

let Q~ be the P~-name for the poset which adds a stationary non-reflecting subset 

of a consisting of ordinals in T,~. We will refer to this set as E~. The first fact 

that  we will need is essentially due to Silver and Kunen (see [4]). 

Fact: (1) For all n and ~ E T~, if Q is the P~-name for the forcing which adds 

a Cohen subset of ~, then 

I~-~,,O ~ is weakly compact. 

(2) I f /~  is the P~ * Q~-name for the forcing which shoots a club through the 

complement of E~, then 

If-e~ Q~ */~ is equivalent to Q. 

We now want to work in the universe V P. It is easy to to see that  each E~ is 

a stationary non-reflecting set (since the stages of the iteration after P~+I add 

no subsets of a). We claim that  for all n and a E Tn, if D C_ a is a stationary 

set and D is disjoint from E~ then D reflects in a regular cardinal. This is easy 

based on the fact. It is enough to work in V ~'"+1. Let R be the poset which 

shoots a club through the complement of E~. After forcing with R, D remains 
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stationary. On the other hand, a becomes weakly compact. So in the extension 

D reflects and so it must reflect before we force with R. 

It is standard (cf. Theorem 1.1) to show that for all n and n E T,~ if CP,~+I 

holds then there is a essentially non-free algebra of cardinality n which is n- 

free. In fact we can construct such an algebra to have E~ as its F-invariant. To 

complete the proof we will show by induction on n that if n E T~ then n implies 

CPn. For n = 0, there is nothing to prove. Suppose the result is true for n and 

that B / A  is n-free both of cardinality n for some n E Tn+l. By Theorem 3.2, 

F(B/A)  C_ E,~. By the proof of Theorem 3.2, we can write B as U~<~B~ a 

continuous union of free algebras, so that for all a,  B~+I + A is n-pure and if 

A is a regular uncountable limit cardinal, then Bx+l + A/Bx + A is A-free of 

cardinality A and essentially non-free if and only if it is not free. By Theorem 4.8 

we are done. | 

That  some large cardinal assumption is needed in the previous theorem is clear. 

For example, if there is no Mahlo cardinal in V = L, then every uncountable 

regular cardinal has a stationary subset consisting of ordinals of cofinality o; 

which does not reflect. So if there is no Mahlo cardinal in L, then the essentially 

non-free incompactness spectrum of any variety which satisfies CP1 is the class of 

regular uncountable cardinals. As we shall see in the next theorem, the existence 

of a Mahlo cardinal is equiconsistent with the existence of a cardinal ~ which is 

in the essentially non-free incompactness spectrum of a variety if and only if the 

variety satisfies CP2. However the situation with CP3 and higher principles seems 

different. It seems that the existence of a cardinal which is in the essentially non- 

free spectrum of a variety if and only if it satisfies CP3 implies the consistency 

of the existence of weakly compact cardinals. 

THEOREM 4.12: The existence of a Mahlo cardinal is equiconsistent with the ex- 

istence of a cardinal ~ which is in the essentially non-free incompactness spectrum 

of a variety if and only if the variety satisfies CP2. 

Proo~ We can work in L and suppose that ~ is the first Mahlo cardinal. Fix 

E C_ ~; a set of inaccessible cardinals which does not reflect. By Theorem 12 of 

[7], there is a forcing notion which leaves E stationary so that  every stationary 

set disjoint to E reflects in a regular cardinal. Now we can complete the proof 

as above to show that n is as demanded by the theorem. | 
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